

M64898GP

PLL Frequency Synthesizer with DC/DC Converter For PC

REJ03F0168-0200 Rev.2.00 Jun 14, 2006

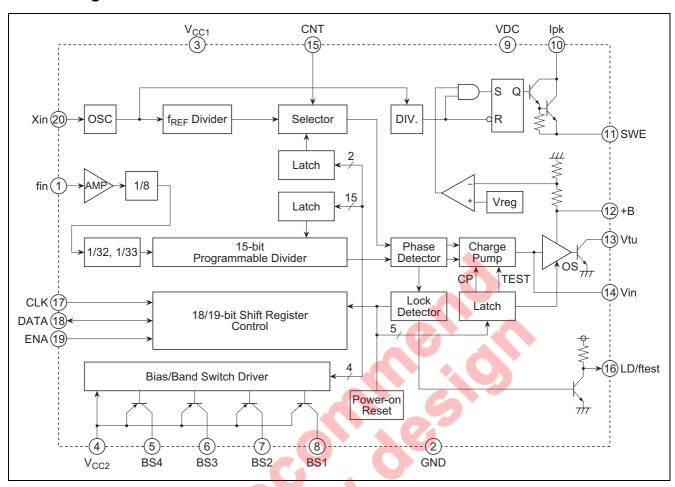
Description

The M64898GP is a semiconductor integrated circuit consisting of PLL frequency synthesizer for TV/VCR /PC.

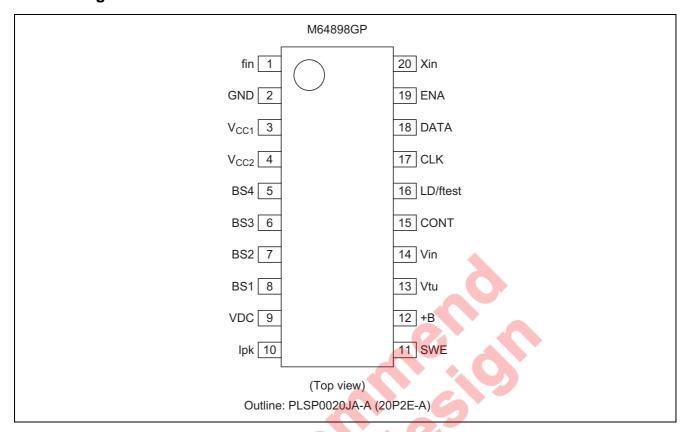
It contains the prescaler with operating up to 1.3 GHz, 4 band drivers and DC/DC converter for Tuning voltage.

Features

- Built-in DC/DC converter for Tuning voltage
- 4 integrated PNP band drivers ($I_0 = 30 \text{ mA}$, $V_{sat} = 0.2 \text{ V Typ.} @V_{CC1} \text{ to } 10 \text{ V}$)
- Built-in prescaler with input amplifier (max = 1.3 GHz)
- PLL lock/unlock status display out put (Built-in pull up resistor)
- X'tal 4 MHz is used to realize 3 type of tuning steps (Divider ratio 1/512, 1/640, 1/1024)
- Software compatible with M64892/M64893
- Automatic switching of tuning step according to the number of data bits (62.5 kHz at 18 bits, 32.25 kHz at 19 bits)
- Built-in Power on reset system
- Small package (SSOP)


Application

PC, TV, VCR tuners


Recommended Operating Condition

- Supply voltage range
 - $-V_{CC1} = 4.5 \text{ to } 5.5 \text{ V}$
 - $V_{CC2} = V_{CC1}$ to 10 V
- Rated supply voltage
 - $V_{CC1} = 5 \text{ V}$
 - $--- V_{CC2} = V_{CC1}$

Block Diagram

Pin Arrangement

Pin Description

Pin			
No.	Symbol	Pin Name	Function
1	fin	Prescaler input	Input for the VCO frequency.
2	GND	GND	Ground to 0 V.
3	V _{CC1}	Power supply voltage 1	Power supply voltage terminal. 5.0 V \pm 0.5 V
4	V _{CC2}	Power supply voltage 2	Power supply for band switching, V _{CC1} to 10 V
5	BS4	Band switching outputs	PNP open collector method is used.
6	BS3		When the band switching data is "H", the output is ON.
7	BS2		When it is "L", the output is OFF.
8	BS1		
9	VDC	DC/DC power supply voltage	DC/DC power supply voltage terminal. 5.0 V ± 0.5V
10	lpk	Peak current detect	When potential difference with VDC terminal becomes more
			than 0.33 V by current limiting detector of DC/DC converter,
			the listing rises with off.
11	SWE	Switching output	DC/DC converter oscillator output.
12	+B	Power supply voltage	Power supply voltage fo <mark>r tuning</mark> voltage.
13	Vtu	Tuning output	This supplies the tuning voltage.
14	Vin	Filter input	This is the output terminal for the LPF input and charge pump
		(charge pump output)	output. When the phase of the programmable divider output
			(f 1/N) is ahead compared to the reference frequency (f _{REF}),
			the "source" current state becomes active.
			If it is behind, the "sink" current becomes active. If the phases are the same, the high impedance state
			becomes active.
15	LD/ftest	Lock detect/Test port	Lock detector output. When loop of phase locked loop locked
10	LD/11001	Eddit dottoor root port	it, it rise with "H" level in "L" level or unlock.
			In control byte data input, the programmable freq. divider
			output and reference freq.
			output is selected by the test mode.
16	CONT	f _{REF} Switch	Set up reference frequency divider ratio.
			In "L" level, set it up in 1/640 (19 Bit) in setting "opening" in
			1/1024 (19 Bit) or 1/512 (18 Bit).
17	CLOCK	Clock input	Data is read into the shift register when the clock signal falls.
18	DATA	Data input	Input for band SW and programmable freq. divider set up.
19	ENABLE	Enable input	This normally at a "L". When this is at "H", data and clock
			signals are received. Data is read into the latch when the
		* %	enable signal after the 18th signal of the clock signal falls or
-	.,,		when the 19th pulse of the clock signal falls.
20	Xin	This is connected to the crystal	4.0 MHz crystal oscillator connected.
		oscillator.	

Absolute Maximum Ratings

 $(Ta = -20^{\circ}C \text{ to } +75^{\circ}C, \text{ unless otherwise noted})$

Item	Symbol	Ratings	Unit	Condition
Supply voltage 1	V _{CC1}	6.0	V	Pin 3
Supply voltage 2	V _{CC2}	10.8	V	Pin 4
Input voltage	Vı	6.0	V	Not to exceed V _{CC1}
Output voltage	Vo	6.0	V	f _{REF} output
Voltage applied when the band output is OFF	V _{BSOFF}	10.8	V	
Band output current	I _{BSON}	40.0	mA	per 1 band output circuit
ON the time when the band output is ON	t _{BSON}	10	S	40mA per 1 band output circuit 3 circuits are pn at same time.
Power dissipation	Pd	255	mW	Ta=75°C
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Recommended Operation Conditions

 $(Ta = -20^{\circ}C \text{ to } +75^{\circ}C, \text{ unless otherwise noted})$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage 1	V _{CC1}	4.5 to 5.5	V	Pin 3
Supply voltage 2	V _{CC2}	V _{CC1} to 10.0	V	Pin 4
Operating frequency (1)	f _{opr1}	4.0	V	Crystal oscillation circuit
Operating frequency (2)	f _{opr2}	80 to 1300	MHz	
Band output current 5 to 8	I _{BDL}	0 to 30	mA	Normally 1 circuit is on. 2 circuit on at the
				same time is max. It is prohibited to have 3
				or more circuits turned on at the same time.

Electrical Characteristics

(Ta = -20°C to +75°C, unless otherwise noted, $V_{CC1} = 5.0 \text{ V}$, $V_{CC2} = 9.0 \text{ V}$)

			Test		Limit	ts		
Item		Symbol	Pin	Min.	Тур.	Max.	Unit	Test Conditions
Input	"H" input voltage	V _{IH}	17 to 19	3.0	_	V _{CC1} + 0.3	V	
termina	"L" input voltage	V _{IL1}	15	_	_	0.4	V	
Is	"L" input voltage	V _{IL2}	17 to 19	_	_	1.5	V	
	"H" input current	I _{IH}	17 to 19	-	_	10	μΑ	$V_{CC1} = 5.5V$, $Vi = 4.0V$
	"L" input current	I _{IL1}	15		-50	-80	μΑ	$V_{CC1} = 5.5V, Vi = 0V$
	"L" input current	I _{IL2}	17, 19		-6	-10	μΑ	$V_{CC1} = 5.5V$, $Vi = 0.5V$
	"L" input current	I _{IL3}	18		-18	-30	μΑ	$V_{CC1} = 5.5V$, $Vi = 0.5V$
Lock	"H" input current	V _{OH}	16	5.0	_		>	V _{CC1} = 5.5V
output	"L" input current	V _{OL}	16		0.3	0.5	>	V _{CC1} = 5.5V
Band	Output voltage	V_{BS}	5 to 8	11.6	11.8		>	$V_{CC2} = 9V, I_O = -30mA$
SW	Leak current	I _{Olk1}	5 to 8		_	-10	μΑ	$V_{CC2} = 9V$, Band SW is OFF $V_O = 0V$
Tuning output	Output voltage "H"	V _{toH}	13	30.5	_	-	V	+B = 31V
	Output voltage "L"	V _{toL}	13	_	0.2	0.4	V	+B = 31V
Charge pump	"H" output current	I _{cpo}	14	_	270	370	μΑ	$V_{CC1} = 5.0V, V_O = 2.5V$
	Leak current	I _{cpLK}	14	_		50	nA	$V_{CC1} = 5.0V, V_0 = 2.5V$
Supply c	urrent 1	I _{CC1}	3		20	30	mA	V _{CC1} = 5.5V
Supply	4 circus OFF	I _{CC2A}	4			0.3	mA	V _{CC2} = 9V
current 2	1 circus ON, Output open	I _{CC2B}	4	0	4.0	6.0	mA	V _{CC2} = 9V
	Output current 30 mA	I _{CC2C}	4)-	34.0	36.0	mA	$V_{CC2} = 9V, I_O = -30mA$
DC/DC C	Converter							
Supply current (action)		I _{CCdc}	9		1.3	3.0	mA	$V_{CC1} = 5.5V$
Output voltage		Vdo	12	28	31	35	V	$V_{CC1} = 5.5V$
OSC frequency		fosc	11	<u> </u>	571	_	kHz	$V_{CC1} = 5.5V$
Current I	imit detect voltage	Vipk	10	_	330	_	mV	V _{CC1} = 5.5V

Note: The typical values are at $V_{CC1} = 5.0 \text{ V}$, $V_{CC2} = 9.0 \text{ V}$, $Ta = +25^{\circ}C$.

Switching Characteristics

(Ta = -20°C to +75°C, unless otherwise noted, $V_{CC1} = 5.0 \text{ V}$, $V_{CC2} = 9.0 \text{ V}$)

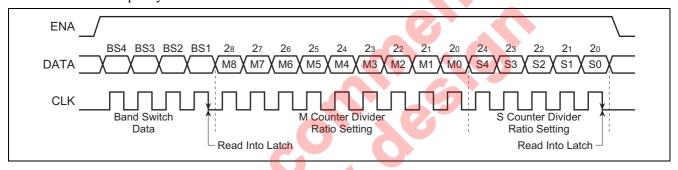
		Test		Limits			10000, 7001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Item	Symbol	Pin	Min.	Тур.	Max.	Unit	Test (Conditions
Prescaler operating	f _{opr}	1	80	_	1300	MHz	$V_{CC1} = 4.5 \text{ to } 5$.5V
frequency							Vin = Vinmin to	Vinmax
Operating input voltage	V _{in}	1	-24	_	4	dBm	$V_{CC1} = 4.5 \text{ to}$	80 to 100MHz
			-27	_	4		5.5V	100 to 950MHz
			-15	_	4			950 to 1300MHz
Clock pulse width	t _{PWC}	17	1	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Data setup time	t _{SU (D)}	18	2	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Data hold time	t _{H (D)}	18	1	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Enable setup time	t _{SU (E)}	18	3	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$	
Enable hold time	t _{H (E)}	18	3	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Enable data interval time	t _{INT}	19, 18	1	_	_	μs	$V_{CC1} = 4.5 \text{ to } 5$	
Rise time	t _R	17, 18, 19	_	_	1	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Fall time	t _F	17, 18, 19	_	_	1	μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Next enable prohibit time	t _{BT}	19	5	_		μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
Next clock prohibit time	t _{BCL}	17, 19	5	_		μs	$V_{CC1} = 4.5 \text{ to } 5$.5V
	0	or	0					

Method of Setting Data

The programmable divider ratio uses 15 bits. Setting up the band switching output uses 4 bits.

The test mode data uses 8 bits. The total bits used are 27 bits. Data is read in when the enable signal is "H" and the clock signal falls.

The band switching data is read in at the 4th pulse of the clock signal. The programmable counter data is read into the latch by the fall of the enable signal after the 18th pulse of the clock signal or the fall of the 19th pulse of the clock signal. When the enable signal goes to "L" before the 18th pulse of the enable signal, only the band SW data is updated and other data is ignored.


Automatic judgment facility comes being it, and, as for Shift resister, CONT terminal rises by 18/19 bits at the time of "L". At the time of data of 18 bits, M9 bit of Programmable divider is done reset of, and it is established in reference frequency divider ratio is established 1/512.

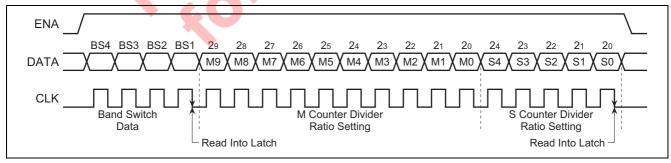
At the time of 19 bits, reference frequency divider ratio is established in 1/1024.

When reference frequency divider ratio was established in 1/640 by 19 bits at the time if "opening" CONT terminal, and it became "L" before 19 pulses enable signal, only band SW data are renewed, and other data are ignored.

1. Transfer of the 18th bit data (CONT terminal is "L")

Data is latched by the fall of the enable signal after the 18th clock signal. At this time, the divider of the 1/512 of the reference frequency is used.

2. Transfer of the 19th bit data (CONT terminal is "L" or "open")


The data is latched at the 19th pulse of the clock signal.

Reference frequency divider ratio is established in 1/1024 in case of "L" CONT terminal at this time.

Reference frequency divider ratio is established in 1/640 in case of "opening" CONT terminal.

Invalid the clock signal after 19th pulse.

Note: When CONT terminal is "L", to change reference frequency, set up as ENA in "L" after 19th pulse of clock signal by all means.

How to Set The Dividing Ratio of The Programmable Divider

1. Transfer of the 18th bit data (CONT terminal is "L")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

The M and S counters are binary the possible ranges of divider are as follows.

Therefore, the range of divider N is 8,192 to 131,064.

The tuning frequency f_{VCO} is given in the following equations.

$$f_{VCO} = f_{REF} \bullet N$$

= 7.8125 • 8 • (32 M + S)
= 62.5 • (32 M + S) (kHz)

Therefore, the tuning frequency range is 64 MHz to 1023.9375 MHz.

2. Transfer of the 19th bit data (CONT terminal is "L")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

The M and S counters are binary the possible ranges of divider are as follows.

Therefore, the range of divider N is 8,192 to 262,136.

The tuning frequency f_{VCO} is given in the following equations.

$$f_{VCO} = f_{REF} \bullet N$$

= 3.90625 • 8 • (32 M + S)
= 31.25 • (32 M + S) (kHz)

Therefore, the tuning frequency range is 32 MHz to 1023.96875 MHz.

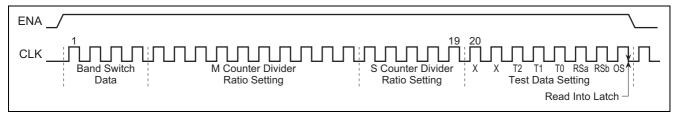
3. Transfer of the 19th data (CONT terminal is "open")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

The M and S counters are binary the possible ranges of divider are as follows.

Therefore, the range of divider N is 8,192 to 262,136.

The tuning frequency f_{VCO} is given in the following equations.


$$f_{VCO} = f_{REF} \bullet N$$

= 6.25 • 8 • (32 M + S)
= 50.0 • (32 M + S) (kHz)

But, the tuning frequency range is 51.2 MHz to 1300 MHz from the maximum prescaler operating frequency.

Test Mode Data Set Up Method

The data for the test mode uses 20 to 27 bits. Data is latched when the 27th clock signal falls.

1. When transferring 3-wire 27 bit data

2. Test Mode Bit Set Up

X : Random, 0 or 1 normal "0"

T0, T1 & T2 : Set up test modes

RSa, Rsa : Set the frequency divider of the reference frequency

OS : Set up the tuning amplifier

Setting Up for The Test mode

T2	T1	T0	Charge Pump	Pin 12 Condition	Mode
0	0	Х	Normal operation	LD	Normal operation
0	1	Х	High impedance	LD	Test mode
1	1	0	Sink	LD	Test mode
1	1	1	Source	LD	Test mode
1	0	0	High impedance	free	Test mode
1	0	1	High impedance	f1/N	Test mode

RSa, RSb: Set Up for The Reference Frequency Divider Ratio

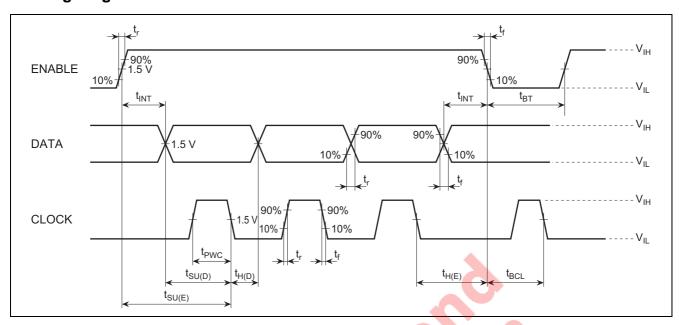
RSa	RSb	Divider Ratio
1	1	1/512
0	1	1/1024
X	0	1/640

OS: Set Up The Tuning Amplifier

os	Tuning Voltage Output	Mode
0	ON	Normal
1	OFF	Test

Power On Reset Operation

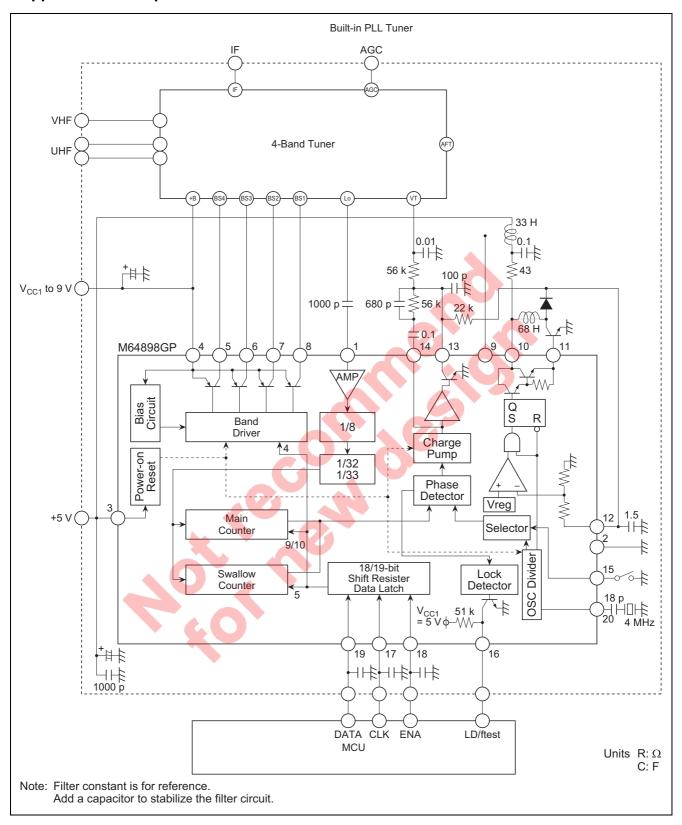
(Initial state the power is turned ON)

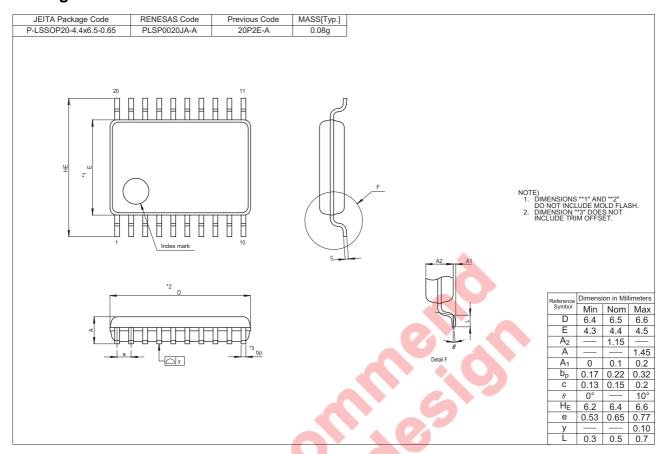

BS4 to BS1 : OFF

Charge pump : High impedance

Tuning amplifier : OFF Charge pump current : 270 μ A Frequency divider ratio : 1/1024 Lock detect : H

Charge pump current is replaced by $70~\mu\text{A}$ when locks it by automatic change facility.


Timing Diagram


Crystal Oscillator Connection Diagram

Application Example

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

© 2006. Renesas Technology Corp., All rights reserved.	Printed in Japan.
	Colombon 6.0